Preview

Proceedings of the Russian Geographical Society

Advanced search

Vulnerability of Field Crops to Over-Wetting under Climate Change in the Non-chernozem Region of the European Russia and Adaptation Options

https://doi.org/10.31857/S0869607121040030

Abstract

The impact of excessive atmospheric moisture on crop production sustainability under forthcoming climate change in the Non-chernozem region of the European Russia is evaluated. Focus is placed on field crops, as they have important food value and are the forage base for dairy farming. Their vulnerability to over-wetting is characterized by recurrence of years with the G.T. Selyaninov Hydrothermal Coefficient (HTC) values greater than 1.8, which correspond to external conditions for the lodging occurrence. Based on the results obtained from the model runs of the transient GCMs with complete description of the physical mechanisms and relationships inside the model blocks, the change in air temperatures, precipitation totals and the HTC values for slice 2021–2030 is assessed. It is shown that when the scenario of controlled greenhouse gas emission into the atmosphere is implemented (that corresponds with UN initiatives to ensure sustainable development until 2030), the northern part of the Non-chernozem region of the European Russia is revealed as most vulnerable to crop over-wetting effects. In the middle part of this zone, the effects of severe crop over-wetting may occur as well. In this regard, the set of adaptation measures and strategies is discussed aimed at mitigating the adverse impact of climate change.

About the Author

M. V. Nikolaev
Agrophysical Research Institute
Russian Federation


References

1. Agroklimaticheskie resursy Arhangel’skoj, Bryanskoj, Vologodskoj, Kostromskoj, Pskovskoj, Smolenskoj oblastej; Karel’skoj ASSR i Komi ASSR (spravochniki). L.: Gidrometeoizdat, 1971–1974.

2. Vtoroj ocenochnyj doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii. Obshhee rezyume. M.: Rosgidromet, 2014. 58 s.

3. Gringof I.G., Kleshhenko A.D. Osnovy sel’skohozyajstvennoj meteorologii. Obninsk: FGBU “VNIIGMI-MCzD”, 2011. T. I. S 601–609.

4. Doklad Rosgidrometa ob osobennostyah klimata na territorii Rossijskoj Federacii za 2018 g. M.: Rosgidromet, 2019. S. 10–14, 18–20.

5. Zotov A.A., Kosolapov V.M., Kobzin A.G., Trofimov I.A., Ulanov A.N., Shevczov A.V., Shel’menkina X.X., Shhukin N.N. Senokosy i pastbishha na osushennyh zemlyah Nechernozem’ya. Moskva–Astana, 2012. 1198 s

6. Katczov V.M., Shkol`nik I.M., Efimov S.V. Perspektivnye ocenki izmenenij klimata v rossijskih regionax: detalizaciya v fizicheskih i veroyatnostnyh prostranstvah // Meteorologiya i gidrologiya. 2017. № 6. S. 68–81.

7. Kiktev D.B., Kruglova E.N., Kulikova I.A. Vliyanie krupnomasshtabnyh mod atmosfernoj cirkulyacii na rezhim temperatury i osadkov v Arktike // Meteorologiya i gidrologiya. 2018. № 1. S. 5–21.

8. Kulikova I.A., Kruglova E.N, Kiktev D.B. Krupnomasshtabnye mody atmosfernoj izmenchivosti. Ch. II. Ih vliyanie na prostranstvennoe raspredelenie temperatury i osadkov na territorii Severnoj Evrazii // Meteorologiya i gidrologiya. 2015. № 4. S. 5–16.

9. Murav’ev A.V., Kulikova I.A Vzaimosvyaz’ summarnyh osadkov nad Evraziej s centrami dejstviya atmosfery Severnogo polushariya i glavny mi modami izmenchivosti temperatury poverhnosti Severnoj Atlantiki // Meteorologiya i gidrologiya. 2011. № 5. S. 5–16.

10. Nesterov E.S. O formirovanii vzryvnyh ciklonov v severo-vostochnoj chasti Atlanticheskogo okeana // Meteorologiya i gidrologiya. 2010. № 10. S. 44–53.

11. Nikolaev M.V. Ocenka smeshheniya granicz zon riskovannogo zemledeliya v usloviyah izmeneniya klimata // Izv. RGO. 2015. T. 147. Vy`p. 1. S. 54–65.

12. Nikolaev M.V. Ispol’zovanie metoda prostranstvenno-vremennyh analogov dlya ocenok uyazvimosti zemledeliya k vozdejstviyu klimaticheskih izmenenij // Izv. RGO. 2015. V. 147. Vyp. 2. S. 1–12.

13. Nikolaev M.V. Klimaticheskij monitoring dlya ocenok uyazvimosti sel’skohozyajstvennyh territorij k effektam pereuvlazhneniya v Nechernozemnoj zone Evropejskoj Rossii // Izv. RGO. 2017. V. 149. Vy`p. 5. S. 4–16.

14. Nikolaev M.V. Uyazvimost’ i adaptaciya polevodstva v regionah Rossii k faktoram atmosfernoj zasuhi i izbytochnogo uvlazhneniya v usloviyah izmenyayushhegosya klimata // Materialy Mezhdunarodnoj nauchnoj konferencii, posvyashhennoj 85-letiyu Agrofizicheskogo NII “Tendencii razvitiya agrofiziki: ot aktual’nyh problem zemledeliya i rastenievodstva k tehnologiyam budushhego”, Sankt-Peterburg, 27–29 sentyabrya 2017 g. SPb: FGBNU AFI, 2017. S. 513–520.

15. Nikolaev M.V. Ocenka izmenyayushhegosya vklada obil’nyh osadkov v riskovannost’ zemledeliya v Nechernozeme Evropejskoj Rossii // Izv. RGO. 2018. V. 150. Vyp. 6. S. 1–14. DOI 10.1134/S0869607118060010

16. Nikolaev M.V. Geostatisticheskaya ocenka riskovannosti zemledeliya Rossii v usloviyax izmeneniya klimata // Materialy 2-j Mezhdunarodnoj nauchnoj konferencii “Tendencii razvitiya agrofiziki: ot aktual’nyh problem zemledeliya i rastenievodstva k tehnologiyam budushhego”, posvyashhennoj pamyati akademika E.I. Ermakova, Sankt-Peterburg, 2–4 oktyabrya 2019 g. SPb: FGBNU AFI, 2019. S. 631–639.

17. Nikolaev M.V. Vliyanie klimaticheskih izmenenij na produktivnost’ melioriruemyh zemel’ // Materialy Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem “Vklad agrofiziki v reshenie fundamental’nyh zadach sel’skohozyajstvennoj nauki”, Sankt-Peterburg, 1–2 oktyabrya 2020 g. SPb: FGBNU AFI, 2020. S. 478–483.

18. Pasechnyuk A.D. Pogoda i poleganie zernovyh kul’tur. L.: Gidrometeoizdat, 1990. 212 s.

19. Prirodno-sel’skohozyajstvennoe rajonirovanie zemel`nogo fonda SSSR. M.: Agropromizdat, 1986. 71 s.

20. Rode A.A. Vodnyj rezhim pochv i ego regulirovanie. M.: Izd-vo AN SSSR, 1963. 117 s.

21. Selyaninov G.T. Principy agroklimaticheskogo rajonirovaniya SSSR // Voprosy agroklimaticheskogo rajonirovaniya SSSR. M.: Izd-vo MSX SSSR, 1958. S. 7–13.

22. Sistema vedeniya sel’skogo hozyajstva severo-zapadnoj zony RSFSR. L.: Kolos, 1968. 592 s.

23. Spravochnik agronoma po sel’skohozyajstvennoj meteorologii. Nechernozemnaya zona Evropejskoj chasti RSFSR / Pod red. I.G. Gringofa. L.: Gidrometeoizdat, 1986. 527 s.

24. Climate change 2014 Synthesis Report / Ed. by The Core Writing Team, R. K. Pachauri, L. Meyer. WMO: Geneva, 2014. 132 p.

25. Climate Extremes and Their Implications for Impact and Risk Assessment / Ed. by J. Sillman, S. Sippel, S. Russo. Elsevier Inc., 2020. 355 p.

26. Eitzinger J., Utset A., Trnka M., Zalud Z., Nikolaev M., Uskov I. Weather and climate and optimization of farm technologies at different input levels // Managing Weather and Climate Risks in Agriculture / M.V.K. Sivakumar, R. Motha (eds.). Springer, 2007. P. 141–170.

27. Eitzinger J., Thaler S., Kubu G., Alexandrov V., Utset A., Mihailovic D.T., Lalic B., Trnka M., Zalud Z., Semiradova D., Ventrella D., Anastasiou D.P., Medany M., Altaher S., Olejnik J., Lesny J., Nemeshko N., Nikolaev M., Simota C., Cojocaru G. Vulnerability and Adaptation Options of European Agriculture // Global Environmental Change: Challenges to Science and Society in Southeastern Europe / V. Alexandrov, M.F. Gajdusek, C.G. Knight, A. Yotova (eds.). Springer, 2010. P. 139–161.

28. Eitzinger J., Kubu G., Thaler S., Glauninger J., Alexandrov V., Utset A., Mihailovic D.T., Lalic B., Trnka M., Zalud Z., Semiradova D., Ventrella D., Anastasiou D.P., Medany M., Altaher S., Olejnik J., Lesny J., Nemeshko N., Nikolaev M.V., Simota C., Cojocaru G. Adaptation Options to Climate Change Impacts in European Agriculture // Climate Change Adaptation: Ecology, Mitigation and Management / A.L. Jenkins (ed.). Nova Science Publishers, 2011. P. 151–162.

29. Franzke C., Feldstein S.B. The continuum and dynamics of Northern Hemisphere teleconnection patterns // J. Atmospheric Science. 2005. V. 62. Iss. 9. P. 3250–3267.

30. Kuhibrodt T. et al. The Low-Resolution Version of HadGEM3 GC 3.1 model: Development and Evaluation for Global Climate // J. Advances in Modeling Earth Systems. 2018. V. 10. Iss. 11. P. 2865–2888. DOI 10.1029/2018MS001370

31. Massonnet F. et al. Replicability of the EC-Earth3 Earth System Model under a Change in Computing Environment // J. Geoscientific Model Development. 2020. V. 13. P. 1165–1178. DOI 10.5194/gmd-13-1165-2020

32. Muller W.A. et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM 1.2-HR) // J. Advances in Modeling Earth Systems. 2018. V. 10. Iss. 7. P. 1383–1413. doi.org/10.1029/2017MS001217

33. Nikolaev M.V. Impact of Climate Change on Agriculture in North-West Russia and Adaptation Options // Advances in Environmental Modeling and Measurements / D.T. Mihailovic, B. Lalic (eds.). Nova Science Publishers, 2010. Ch. 20. P. 223–231.

34. Nikolaev M.V. Integrated Assessment of Change in Contribution of Excessive Moisture to Farming Risks in the Humid Zone of Western Russia // J. Meteorology, Hydrology and Water Management. 2020. V. 8. Iss. 1. P. 46–53. DOI 10.26491/mhwm/111543

35. Swart N.C. et al. The Canadian Earth System Model version 5 (Can ESM5.03) // J. Geoscientific Model Development. 2019. V. 12. Iss. 11. P. 4823–4873. DOI 10.5194/gmd-12-4823-2019


Review

For citations:


Nikolaev M.V. Vulnerability of Field Crops to Over-Wetting under Climate Change in the Non-chernozem Region of the European Russia and Adaptation Options. Proceedings of the Russian Geographical Society. 2021;153(4):47-67. (In Russ.) https://doi.org/10.31857/S0869607121040030

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-6071 (Print)