Preview

Proceedings of the Russian Geographical Society

Advanced search

Evolution of the temperature of the water column of boreal lakes against the background of changes in the regional climate

Abstract

The results of studies of the effect of changes in the regional climate on the dynamics of the thermal regime of two small boreal lakes with different types of mixing during the open water period according to the data of long-term observations are given in the article. The main attention is paid to the stage of spring mixing (including spring under-ice convection and the stage of homothermy after breaking of ice), and revealing its role in the development of the thermal regime of lakes at subsequent stages of the annual cycle. It is shown that the spring under-ice convection began on lakes earlier and lasted longer in years with abnormally high winter and spring air temperatures than in years with temperatures of these months close to the climatic norm. This could provoke the formation of direct stratification by the end of the ice period and the disappearance of the stage of homothermy after ice-break. The duration of the spring homothermia phase is the most critical for dimictic lakes, since it affects the summer temperature of the hypolimnion and can therefore determine both the thermal and gas regimes at subsequent stages of the annual cycle. The obtained results allow us to conclude that, against the background of anomalously warm winter and spring months, polymictic lakes can acquire features of dimictic ones, leaving stably stratified after the melting of ice, and losing the stage of spring homothermy. Reduction of the ice-period on dimictic lakes due to earlier ice-off may lead to both a decrease and an increase in the duration of summer stratification, depending on the weather conditions of late spring and early summer.

About the Authors

G. E. Zdorovennova
Northern water problems Institute Karelian Research Center of RAS
Russian Federation


G. G. Gavrilenko
Northern water problems Institute Karelian Research Center of RAS
Russian Federation


R. E. Zdorovennov
Northern water problems Institute Karelian Research Center of RAS
Russian Federation


I. .. Mammarella
University of Helsinki
Russian Federation


A. .. Ojala
University of Helsinki
Russian Federation


J. .. Heiskanen
ICOS ERIC
Russian Federation


A. Yu. Terzhevik
Northern water problems Institute Karelian Research Center of RAS
Russian Federation


References

1. Ефремова Т. В., Пальшин Н. И., Здоровеннова Г. Э., Тержевик А. Ю. Влияние экстремально жаркого лета 2010 г. на температуру воды и распределение кислорода в озерах Карелии // Метеорология и гидрология. 2015. № 9. С. 67-76.

2. Ефремова Т. В., Пальшин Н.И., Белашев Б. З. Температура воды разнотипных озер Карелии в условиях изменения климата (по данным инструментальных измерений 1953-2011 гг.) // Водные ресурсы. 2016. Т. 43, № 2. С. 228- 238.

3. Гавриленко Г. Г., Здоровеннова Г. Э., Здоровеннов Р. Э. и др. Термический и кислородный режимы мелководного озера на этапе летнего нагревания // Геополитика и экогеодинамика регионов. 2014. № 10(1). С. 414-421.

4. Гавриленко Г. Г., Здоровеннова Г. Э., Здоровеннов Р. Э. и др. Теплопоток на границе вода-донные отложения в небольшом озере // Тр. КарНЦ РАН. 2015. № 9. Сер. Лимнология. C. 3-9.

5. Здоровеннова Г. Э., Здоровеннов Р. Э., Пальшин Н. И. и др. Термический режим мелководного озера после разрушения льда // Тр. VIII Междунар. науч.-практ. конф. «Динамика и термика рек, водохранилищ и прибрежной зоны морей». М.: РУДН, 2014. С. 390-401.

6. Здоровеннова Г. Э., Голосов С. Д., Зверев И. С. и др. Реакция термической структуры малых бореальных озер на различные сценарии атмосферного воздействия // Успехи современного естествознания. 2015. № 10. С. 100-103.

7. Назарова Л. Е. Климат Республики Карелия (Россия): температура воздуха, изменчивость и изменения // Геополитика и экогеодинамика регионов. 2014. Т. 10, № 1. С. 746-749.

8. Озера Карелии / Под ред. Н. Н. Филатова, В. И. Кухарева. Петрозаводск: КарНЦ РАН, 2013. 463 с.

9. Тержевик А. Ю. Пальшин Н. И., Голосов С. Д. и др. Гидрофизические аспекты формирования кислородного режима мелководного озера, покрытого льдом // Водные ресурсы. 2010. 37(5). С. 568-579.

10. Хатчинсон Д. Лимнология. М.: Прогресс, 1969. 592 с.

11. Adrian R., O'Reilly C., Zagarese H. et al. Lakes as sentinels of climate change // Lim-nol. Oceanogr. 2009. V. 54, N 6(2). P. 2283-2297.

12. Arvola L., George G., Livingstone D. et al. The impact of the changing climate on the thermal characteristics of lakes // The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4. 2010. P. 85-101.

13. Diaz R. J. Overview of hypoxia around the World // J. Env. Qual. 2001. V. 30. P. 275-281.

14. Heiskanen J., Mammarella I., Haapanala S. et al. Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake // Tellus B. 2014. V. 66. P. 22827. http://dx.doi.org/10.3402/tellusb.v66.22827.

15. Heiskanen J., Mammarella I., Ojala A. et al. Effects of water clarity on lake stratification and lake-atmosphere heat exchange // J. Geophys. Res. Atmos. 2015. V. 120. P. 7412-7428. D0I:10.1002/2014JD022938.

16. Gerten D., Adrian R. Climate driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation // Limnol. Oceanogr. 2000. V. 45, N 5. P. 1058-1066.

17. Golosov S., Maher O. A., Schipunova E. et al. Physical background of the development of oxygen depletion in ice-covered lakes // Oecologia. 2007. V. 151, N 2. P. 331-340.

18. Golosov S., Terzhevik A., Zverev I. et al. Climate change impact on thermal and oxygen regime of shallow lakes // Tellus A. 2012. V. 64. 17264. DOI: 10.3402/tellusa. v64i0.17264.

19. Kirillin G. Modelling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes // Bor. Environ. Res. 2010. V. 15. P. 279-293.

20. Lewis W. M. A revised classification of lakes based on mixing // Can. J. Fish. Aqua. Sci. 1983. V. 40 P. 1779-1787. DOI:10.1139/f83-207.

21. Livingstone D. Impact of secular climate change on the thermal structure of a large temperate central European lake // Climatic Change. 2003. V. 57. P. 205-225.

22. Lopez Bellido J., Tulonen T., Kankaala P., Ojala A. CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Paajarvi, southern Finland) // J. Geophys. Res. 2009. V. 114. G04007. DOI: 10.1029/2009JG000923.

23. Magnuson J., Robertson D., Benson B. et al. Historical trends in lake and river ice cover in the Northern Hemisphere // Science. 2000. V. 289, N 5485. P. 1743-1746.

24. Mironov D., Terzhevik A., Kirillin G. et al. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model // J. Geophys. Res. 2002. V. 107. P. 7-16.

25. O'Reilly C. M., Sharma S., Gray D. et al. Rapid and highly variable warming of lake surface waters around the globe // Geophys. Res. Letters. 2015. V. 42, N 24. P. 10 773-10 781.

26. Salonen K., Pulkkanen M., Salmi P., Griffiths R. Interannual variability of circulation under spring ice in a boreal lake // Limnol. Oceanogr. 2014. V. 59, N 6. P. 2121- 2132.

27. Schulz S., Matsuyama H., Conrad R. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance) // FEMS Microbiology Ecology. 1997. V. 22. P. 207-213.


Review

For citations:


Zdorovennova G.E., Gavrilenko G.G., Zdorovennov R.E., Mammarella I..., Ojala A..., Heiskanen J..., Terzhevik A.Yu. Evolution of the temperature of the water column of boreal lakes against the background of changes in the regional climate. Proceedings of the Russian Geographical Society. 2017;149(6):59-74. (In Russ.)

Views: 202


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-6071 (Print)