Assessment of Basin-Scale Soil Erosion within the Largest Siberian Rivers
https://doi.org/10.31857/S0869607122050093
Abstract
In this paper, we assessed soil erosion within the largest river basins of the Russian Federation (Ob, Yenisei, Lena, Yana, Indigirka, Kolyma). Soil losses have been estimated with RUSLE based on the digital elevation model of the maximum available resolution (≈90 × 90 m). The results are compared with existing global estimates and previous studies for the Russian territory. The conclusion was made about high uncertainty of small-scale erosion estimates made on a subcontinental scale, which is explained by the high sensitivity of RUSLE to the parameterization of the length and steepness of slopes. In the sublatitudinal direction, for all basins there is an increase in erosion from north to south, corresponding to the general strengthening of agricultural land use. Based on comparison with the suspended sediment yield, the conclusion was made about an exceptionally accumulative regime of the considered watersheds: more than 90% of sediments do not reach the estuaries of the rivers.
About the Authors
A. S. TsyplenkovRussian Federation
Faculty of Geography
Moscow
S. R. Chalov
Russian Federation
Faculty of Geography
Moscow
G. L. Shinkareva
Russian Federation
Faculty of Geography
Moscow
References
1. Alekseevskij N.I. Formirovanie i dvizhenie rechnyh nanosov. Moskva: Geograficheskij fakul’tet MGU Moskva, 1998. 202 s.
2. Bazhenova O.I. Zakonomernosti dvizhenija ryhlogo materiala na lesostepnyh sklonah v Nazarovskoj vpadine (po rezul’tatam stacionarnyh nabljudenij) // Geografija i prirodnye resursy. 1988. S. 53–73.
3. Bartalev S.A., Egorov V.A., Ershov D.V., Isaev A.S., Lupjan E.A., Plotnikov D.E., Uvarov I.A. Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii po dannym spektroradiometra MODIS // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2011. T. 8. vyp. 4. S. 285–302.
4. Beljaev Ju.R., Harchenko S.V., Romanenko F.A., Eremenko E.A., Matlahova E.Ju. Antropogennaja transformacija rel’efa Arkticheskoj zony Rossii: hronologija, geografija, intensivnost' // Rel’ef i chetvertichnye obrazovanija Arktiki, Subarktiki i Severo-Zapada Rossii. Materialy ezhegodnoj konferencii po rezul’tatam jekspedicionnyh issledovanij. VNIIOkeangeologija/AANII Sankt-Peterburg, 2020. S. 18–23. https://doi.org/10.24411/2687-1092-2020-10702
5. Bredihin A.V., Eremenko E.A., Harchenko S.V., Beljaev Ju.R., Romanenko F.A., Bolysov S.I., Fuzeina Ju.N. Rajonirovanie Rossijskoj Arktiki po tipam antropogennogo osvoenija i soputstvujushhej transformacii rel’efa na osnove klasternogo analiza // Vestnik Moskovskogo universiteta. Serija 5. Geografija. 2020. vyp. 1. S. 42–56.
6. Vol’nov V.V., Bojko A.V., Chichkarev A.S. Opyt ispol’zovanija protivojerozionnyh gidrotehnicheskih sooruzhenij v bor’be so stokom talyh vod i smyvom pahotnyh pochv na sklonovyh zemljah Altajskogo kraja // Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2017.
7. Golosov V.N. Jerozionno-akkumuljativnye processy v rechnyh bassejnah osvoennyh ravnin. GEOS Moskva, 2006.
8. Golosov V.N., Larionov G.A., Sidorchuk A.Ju. Istoricheskij jetap v osvoenii jerozionno-ruslovyh sistem // Jerozionno-ruslovye sistemy / red. Chalov R.S., Golosov V.N., Sidorchuk A.Ju. M., 2017. S. 702.
9. Gusarov A.V. Opredelenie minimal’noj prodolzhitel’nosti rjada nabljudenij za stokom vzveshennyh nanosov s cel’ju korrektnoj ocenki prostranstvenno-vremennoj izmenchivosti intensivnosti jerozii v ih bassejnah // Geomorfologija. 2017. vyp. 1. S. 19–29. https://doi.org/: 10.15356/0435-4281-2017-1-19-29
10. Dedkov A.P., Mozzherin V.I. Jerozija i stok nanosov na Zemle. Kazan’: Izdatel’stvo Kazanskogo Universiteta, 1984. 264 s.
11. Evseeva N.S. Sovremennyj morfolitogenez jugo-vostoka Zapadno-Sibirskoj ravniny. Tomsk: Izd-vo NTL, 2009. 484 s.
12. Evseeva N.S., Kvasnikova Z.N., Kashiro M.A., Osinceva N.V., Aleev V.V. Kolichestvennaja ocenka smyva pochv v agrolandshaftah juzhnoj tajgi // Otrazhenie bio-, geo-, antroposfernyh vzaimodejstvij v pochvah i pochvennom pokrove. sbornik materialov V Mezhdunarodnoj nauchnoj konferencii, posvjashhennoj 85-letiju kafedry pochvovedenija i jekologii pochv TGU. Tomsk: NI TGU, 2015. S. 185–189.
13. Evseeva N.S., Kvasnikova Z.N., Ljudkevich E.I. Jerozionnye processy v prirodno-antropogennyh geosistemah juzhnoj tajgi Zapadno-Sibirskoj ravniny i ih geojekologicheskie aspekty // Geojekologija, inzhenernaja geologija, gidrogeologija, geokriologija. 2014. vyp. 5. S. 442–449.
14. Ivanov V.V., Chalov S.R. Ocenka stoka i sostava nanosov r. Ob’ // Zakonomernosti projavlenija jerozionnyh i ruslovyh processov v razlichnyh prirodnyh uslovijah. Materialy V Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem. M., 2019. S. 219–222.
15. Larionov G.A. Jerozija i defljacija pochv: osnovnye zakonomernosti i kolichestvennye ocenki. Moskva: Izdatel’stvo Moskovskogo Universiteta, 1993. 200 s.
16. Liseckij F.N., Svetlichnyj A.A., Chernyj S.G. Sovremennye problemy jeroziovedenija / red. Svetlichnyj A.A. Belgorod: Konstanta, 2012. 456 s.
17. Lysanova G.I., Sorokovoj A.A. Potencial zemel’nyh resursov regionov Sibiri // Geografija I Prirodnye Resursy. 2015. vyp. 2. S. 149–155.
18. Magrickij D.V. Godovoj stok vzveshennyh nanosov rossijskih rek vodosbora Severnogo Ledovitogo okeana i ego antropogennye izmenenija // Vestnik Moskovskogo universiteta. Serija 5: Geografija. 2010. vyp. 6. S. 17–24.
19. Savel’eva D.A., Kalichkin V.K. Vnutrisezonnyj monitoring vodnoj jerozii pochv pashni v podtajge Zapadnoj Sibiri // Dostizhenija nauki i tehniki APK. 2021. T. 35. vyp. 5. S. 15–21. https://doi.org/10.24411/0235-2451-2021-10502
20. Surmach G.P. Vodnaja jerozija i bor’ba s nej. L.: Gidrometeoizdat, 1976. 254 s.
21. Tanasienko A.A. Specifika jerozii pochv v Sibiri. Novosibirsk: Izdatel’stvo SO RAN, 2003. 176 s.
22. Chalov S.R., Shkol’nyj D.I., Promahova E.V., Leman V.N., Romanchenko A.O. Formirovanie stoka nanosov v rajonah razrabotok rossypnyh mestorozhdenij // Geografija I Prirodnye Resursy. 2015. vyp. 2. S. 22–30.
23. Chebochakov E.Ja., Murtaev V.N. Sovremennoe sostojanie ispol’zovanija pahotnyh zemel' v hozjajstvah raznyh form sobstvennosti prienisejskoj Sibiri // Vestnik KrasGAU. 2021. T. 2. vyp. 167. S. 10–16.
24. Chumbaev A.S., Tanasienko A.A. Izmerenie i ocenka jerozii pochv v rezul’tate snegotajanija // Novye metody i rezul’taty issledovanij landshaftov v Evrope, Central’noj Azii i Sibiri / red. Sychev V.G., Mjuller L. Vserossijskij nauchno-issledovatel’skij institut agrohimii imeni D.N. Prjanishnikova, 2018. S. 224–228. doi: 10.25680/7597.2018.78.77.145
25. Shvebs G.I. Formirovanie vodnoj jerozii, stoka nanosov i ih ocenka. Leningrad: Gidrometeoizdat, 1974. 184 s.
26. Shynbergenov E.A., Ermolaev O.P. Potencial’naja jerozija pochv bassejna R. Lena // Vest. Udmurt. un-ta. Ser. Biologija. Nauki o Zemle. 2017. T. 27. vyp. 4. S. 513–528.
27. Shheglova O.P. Formirovanie stoka vzveshennyh nanosov i smyv s gornoj chasti Srednej Azii // Tr. SredneazNIGMI. 1972. vyp. 60/75. S. 228.
28. Global Soil Partnership endorses guidelines on sustainable soil management | Global Soil Partnership | Food and Agriculture Organization of the United Nations [Jelektronnyj resurs]. Rezhim dostupa: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/.
29. Edinyj gosudarstvennyj reestr pochvennyh resursov Rossii [Jelektronnyj resurs]. Rezhim dostupa: http://atlas.mcx.ru/materials/egrpr/content/1sem.html.
30. Jerozionnye processy central’nogo Jamala / red. Sidorchuk A.Ju., Baranov A.V. Spb., 1999. 350 s.
31. FAO. Crops Production [Jelektronnyj resurs]. Rezhim dostupa: http://www.fao.org/faostat/en/#data/QC.
32. Jerozionno-ruslovye sistemy / red. Chalov R.S., Golosov V.N., Sidorchuk A.Ju. M.: INFRA-M, 2017. 702 s.
33. Alewell C., Borrelli P., Meusburger K., Panagos P. Using the USLE: Chances, challenges and limitations of soil erosion modelling // International Soil and Water Conservation Research. 2019. Vol. 7. № 3. P. 203–225. doi: 10.1016/j.iswcr.2019.05.004
34. Alewell C., Meusburger K., Juretzko G., Mabit L., Ketterer M.E. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands // Chemosphere. 2014. Vol. 103. P. 274–280. https://doi.org/10.1016/j.chemosphere.2013.12.016
35. Atoma H., Suryabhagavan K. V., Balakrishnan M. Soil erosion assessment using RUSLE model and GIS in Huluka watershed, Central Ethiopia // Sustainable Water Resources Management. 2020. Vol. 6. № 1. P. 12. https://doi.org/10.1007/s40899-020-00365-z
36. Benavidez R., Jackson B., Maxwell D., Norton K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates // Hydrology and Earth System Sciences. 2018. Vol. 22. № 11. P. 6059-6086. https://doi.org/10.5194/hess-22-6059-2018
37. GLOBCOVER 2009 Products Description and Validation Report. 2011.
38. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K. Van, Montanarella L., Panagos P. An assessment of the global impact of 21st century land use change on soil erosion // Nature Communications. 2017. Vol. 8. № 1. P. 2013. https://doi.org/10.1038/s41467-017-02142-7
39. Bosco C., Rigo D. De, Dewitte O., Poesen J., Panagos P. Modelling soil erosion at European scale: Towards harmonization and reproducibility // Natural Hazards and Earth System Sciences. 2015. Vol. 15. № 2. P. 225–245. https://doi.org/10.5194/nhess-15-225-2015
40. Chadli K. Estimation of soil loss using RUSLE model for Sebou watershed (Morocco) // Modeling Earth Systems and Environment. 2016. Vol. 2. № 2. P. 51. https://doi.org/10.1007/s40808-016-0105-y
41. Chalov S.R., Liu S., Chalov R.S., Chalova E.R., Chernov A. V., Promakhova E. V., Berkovitch K.M., Chalova A.S., Zavadsky A.S., Mikhailova N. Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China // Environmental Earth Sciences. 2018. Vol. 77. № 7. P. 274. https://doi.org/10.1007/s12665-018-7448-9
42. Chalov S.R., Tsyplenkov A.S. Testing soil erosion model for large river basins: Lena river // 3rd International Conference on the Status and Future of the World‘s Large Rivers 18-21 April 2017, New Delhi, India. New Delhi, 2017.
43. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 // Geoscientific Model Development. 2015. Vol. 8. № 7. P. 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
44. Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey OpenFile Report 2011–1073. 2011. 26 p.
45. Desmet P., Govers G. A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units // Journal of Soil and Water Conservation. 1996. Vol. 51. № 5. P. 427–433.
46. Desmet P.J.J., Govers G. GIS-based simulation of erosion and deposition patterns in an agricultural landscape: a comparison of model results with soil map information // Catena. 1995. Vol. 25. № 1–4. P. 389–401.
47. Fabre C., Sauvage S., Tananaev N., Noël G.E., Teisserenc R., Probst J.L., Pérez J.M.S. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River basin // Water Research. 2019. Vol. 158. P. 118–135. https://doi.org/10.1016/j.watres.2019.04.018
48. Viewfinder Panoramas [Электронный ресурс] / Ferranti J. de. Режим доступа: http://viewfinderpanoramas.org/dem3.html.
49. Fu B., Liu Y., Lü Y., He C., Zeng Y., Wu B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China // Ecological Complexity. 2011. Vol. 8. № 4. P. 284–293. https://doi.org/10.1016/j.ecocom.2011.07.003
50. Gayen A., Saha S., Pourghasemi H.R. Soil erosion assessment using RUSLE model and its validation by FR probability model // Geocarto International. 2020. Vol. 35. № 15. P. 1750–1768. https://doi.org/10.1080/10106049.2019.1581272
51. Griffin M.L., Beasley D.B., Fletcher J.J., Foster G.R. Estimating soil loss on topographically nonuniform field and farm units // Journal of soil and water conservation. 1988. Vol. 43. № 4. P. 326–331.
52. Hansen M.C., Potapov P. V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S. V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. High-Resolution Global Maps of 21st-Century Forest Cover Change // Science. 2013. Vol. 342. № 6160. P. 850–853. https://doi.org/10.1126/science.1244693
53. Hengl T., Jesus J.M. De, MacMillan R.A., Batjes N.H., Heuvelink G.B.M. Correction: SoilGrids1km — Global Soil Information Based on Automated Mapping // PLoS ONE. 2014. Vol. 9. № 12. P. e114788. https://doi.org/10.1371/journal.pone.0114788
54. Jazouli A. El, Barakat A., Ghafiri A., Moutaki S. El, Ettaqy A., Khellouk R. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco) // Geoscience Letters. 2017. Vol. 4. № 1. P. 25. https://doi.org/10.1186/s40562-017-0091-6
55. Kinnell P.I.A. Discussion: Misrepresentation of the USLE in ‘Is sediment delivery a fallacy?’ // Earth Surface Processes and Landforms. 2008. Vol. 33. № 10. P. 1627–1629. doi: 10.1002/esp.1629
56. Soil erosion risk assessment in Italy. European Soil Bureau Research Report No. EUR 19022EN, 1999. 58 p.
57. Lehner B., Grill G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems // Hydrological Processes. 2013. Vol. 27. № 15. P. 2171–2186. https://doi.org/10.1002/hyp.9740
58. McCool D.K., Brown L.C., Foster G.R., Mutchler C.K., Meyer L.D. Revised slope steepness factor for the Universal Soil Loss Equation // Trans. ASAE. 1987. Vol. 30. № 5. P. 1387–1396.
59. Melkonian A.K., Willis M.J., Pritchard M.E., Stewart A.J. Recent changes in glacier velocities and thinning at Novaya Zemlya // Remote Sensing of Environment. 2016. Vol. 174. P. 244–257. https://doi.org/10.1016/j.rse.2015.11.001
60. Meusburger K., Konz N., Schaub M., Alewell C. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment // International Journal of Applied Earth Observation and Geoinformation. 2010. Vol. 12. № 3. P. 208–215. https://doi.org/10.1016/j.jag.2010.02.004.
61. Nachtergaele F., Velthuizen H. Van, Verelst L. Harmonized world soil database // Food and Agriculture …. 2008. P. 43.
62. Nearing M.A. A single, continuous function for slope steepness influence on soil loss // Soil Science Society of America Journal. 1997. Vol. 61. № 3. P. 917–919.
63. Olorunfemi I.E., Komolafe A.A., Fasinmirin J.T., Olufayo A.A., Akande S.O. A GIS-based assessment of the potential soil erosion and flood hazard zones in Ekiti State, Southwestern Nigeria using integrated RUSLE and HAND models // CATENA. 2020. Vol. 194. P. 104725. https://doi.org/10.1016/j.catena.2020.104725
64. Oost K. Van, Govers G., Cerdan O., Thauré D., Rompaey A. Van, Steegen A., Nachtergaele J., Takken I., Poesen J. Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets // CATENA. 2005. Vol. 61. № 2–3. P. 105–121. https://doi.org/10.1016/j.catena.2005.03.001
65. Ozcan A.U., Erpul G., Basaran M., Erdogan H.E. Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Çankırı, Turkey // Environmental Geology. 2008. Vol. 53. № 8. P. 1731–1741. https://doi.org/10.1007/s00254-007-0779-6
66. Panagos P. et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records // Scientific Reports. 2017. Vol. 7. № 1. P. 4175. https://doi.org/10.1038/s41598-017-04282-8
67. Panagos P., Borrelli P., Meusburger K. A New European Slope Length and Steepness Factor (LSFactor) for Modeling Soil Erosion by Water // Geosciences. 2015. Vol. 5. P. 117–126. https://doi.org/10.3390/geosciences5020117.
68. Panagos P., Borrelli P., Meusburger K., Alewell C., Lugato E., Montanarella L. Estimating the soil erosion cover-management factor at the European scale // Land Use Policy. 2015. Vol. 48. P. 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
69. Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. The new assessment of soil loss by water erosion in Europe // Environmental Science and Policy. 2015. Vol. 54. № August. P. 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
70. Parsons A.J., Wainwright J., Brazier R.E., Powell D.M. Is sediment delivery a fallacy? // Earth Surface Processes and Landforms. 2006. Vol. 31. N 10. P. 1325−1328. https://doi.org/10.1002/esp.1395
71. Parsons A.J., Wainwright J., Brazier R.E., Powell D.M. Is sediment delivery a fallacy? Reply // Earth Surface Processes and Landforms. 2008. Vol. 33. № 10. P. 1630–1631. https://doi.org/10.1002/esp.1627
72. Pietroń J., Chalov S.R., Chalova A.S., Alekseenko A.V., Jarsjö J. Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin // Catena. 2017. Vol. 152. P. 82–93. https://doi.org/10.1016/j.catena.2017.01.008
73. R Core Team R: A Language and Environment for Statistical Computing. 2020.
74. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) // Agricultural Handbook No. 703. 1997. P. 404. https://doi.org/: DC0-16-048938-5 65–100
75. Renard K.G., Foster G.R., Weesies G.A., Porter J.P. RUSLE: revised universal soil loss equation // Journal of soil and Water Conservation. 1991. Vol. 46. № 1. P. 30–33.
76. Validation of soil erosion risk assessments in Italy. European Soil Bureau Research Report No. EUR 20676 EN, 2003. 25 p.
77. Schönbrodt S., Saumer P., Behrens T., Seeber C., Scholten T. Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China // Journal of Earth Science. 2010. Vol. 21. № 6. P. 835–845. https://doi.org/10.1007/s12583-010-0135-8
78. Shrestha N.K., Wang J. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate // Science of The Total Environment. 2018. Vol. 625. P. 1030–1045. https://doi.org/10.1016/j.scitotenv.2017.12.347
79. Syvitski J.P.M., Milliman J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean // Journal of Geology. 2007. № 115. P. 1–19.
80. Tavares da Costa R., Mazzoli P., Bagli S. Limitations Posed by Free DEMs in Watershed Studies: The Case of River Tanaro in Italy // Frontiers in Earth Science. 2019. Vol. 7. № May. https://doi.org/10.3389/feart.2019.00141
81. Tsyplenkov A.S., Shynbergenov E.A., Chalov S.R., Ermolaev O.P. Spatio-temporal assessment of soil erosion and sediment yield for a large river basin // The Second International Young Scientists Forum on Soil and Water Conservation and ICCE symposium 2018 “Climate Change Impacts on Sediment Dynamics: Measurement, Modelling and Management”. Moscow, 2018.
82. Turowski J.M., Rickenmann D., Dadson S.J. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data // Sedimentology. 2010. Vol. 57. N 4. P. 1126–1146. https://doi.org/10.1111/j.1365-3091.2009.01140.x
83. Vente J. de, Poesen J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models // Earth-Science Reviews. 2005. Vol. 71. № 1–2. P. 95–125. https://doi.org/10.1016/j.earscirev.2005.02.002
84. Williams J.R. Chapter 25: The EPIC model. // Computer models of watershed hydrology / ed. Singh V.P. Highlands Ranch, Colorado: Water Resources Publications, 1995. P. 909–1000.
85. Wilson J.P. Estimating the topographic factor in the universal soil loss equation for watersheds // Journal of soil and water conservation. 1986. Vol. 41. № 3. P. 179–184.
86. Wischmeier W.H., Smith D.D., Uhland R.E. Evaluation of factors in the soil loss equation // Agricultural Engineering. 1958. Vol. 39. № 8. P. 458–462.
87. Wu S., Li J., Huang G. An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models // Environmental Modeling & Assessment. 2005. Vol. 10. № 1. P. 33–42. https://doi.org/10.1007/s10666-004-6595-4
88. Zingg A.W. Degree and length of land slope as it affects soil loss in runoff // Agric. Engineering. 1940. Vol. 21. P. 59–64.
89. Litvin L.F. Geografiya erozii pochv sel’skoxozyajstvennyh zemel’ Rossii. Moskva: IKC “Akademkniga”, 2002. 255 s.
Supplementary files
Review
For citations:
Tsyplenkov A.S., Chalov S.R., Shinkareva G.L. Assessment of Basin-Scale Soil Erosion within the Largest Siberian Rivers. Proceedings of the Russian Geographical Society. 2022;154(5-6):86-111. (In Russ.) https://doi.org/10.31857/S0869607122050093