Thermal Regime of Small Lakes in Karelia (Calculations on the Numerical Flake Model)
https://doi.org/10.31857/S0869607120030052
Abstract
Based on the results of simulations using the numerical model FLake, the variability of the thermal regime of small lakes (with an area of less than 5 km2 ) of different types in Karelia under different weather conditions (1999–2012) was studied. The response of temperature, thickness and heat content of the surface mixed layer of lakes during the period of maximum heating of their water column (the second decade of July) to the weather conditions of cold 2007 and anomalously hot 2010 years is considered. In a hot year, the increase in the temperature of the surface layer in the “colored” lakes is noticeably higher than in the transparent ones. At the same time, the depth of the mixed layer decreases most noticeably in deep transparent lakes. The heat storage of the surface layer in epi- and metathermal “colored” and transparent lakes increases, and in hypothermic lakes it decreases. Calculations have shown that with increasing transparency, the most pronounced increase in the depth of the surface layer and its heat storage is observed in deep transparent water bodies, as compared with “colored” epi- and metathermal ones. With possible climatic changes in evaporation and input of dissolved substances into lakes from catchments, one can expect the most expressed changes in the thermal regime of deep transparent lakes.
About the Authors
N. I. PalshinRussian Federation
T. V. Efremova
Russian Federation
G. E. Zdorovennova
Russian Federation
G. G. Gavrilenko
Russian Federation
R. E. Zdorovennov
Russian Federation
A. Yu. Terzhevik
Russian Federation
S. R. Bogdanov
Russian Federation
References
1. Efremova T.V., Pal’shin N.I., Belashev B.Z. Temperatura vody raznotipnyh ozer Karelii v usloviyah izmeneniya klimata (po dannym instrumental’nyh izmerenij 1953–2011 gg.) // Vodnye resursy. 2016. V. 43. № 2. S. 228–238.
2. Karpechko Yu.V. Izmenenie godovogo stoka s rechnyh vodosborov // Klimat Karelii: Izmenchivost’ i vliyanie na vodnye ob’’ekty. Petrozavodsk: KarNC RAN, 2004. S. 55–63.
3. Kuz’menko L.G. Termicheskij rezhim vodnoj massy i donnyh otlozhenij // Biologicheskaya produktivnost' oz. Krasnogo. L., Nauka, 1976. S. 18–36.
4. Laboratoriya Imitacionnogo Modelirovaniya. Modelirovanie solnechnoj radiacii. URL: http://energovent.com/ru/stati/modelirovanie-solnechnoj-radiatsii (data obrashcheniya 16.09.2020 g.)
5. Nazarova L.E. Vliyanie kolebanij klimata na stok s vodosbora Onezhskogo ozera // Geografiya i prirodnye resursy. 2010. № 1. S. 171–174.
6. Ozera Karelii. Spravochnik. Petrozavodsk: KarNC RAN, 2013. 464 s.
7. Okeanograficheskie tablicy. L.: Gidrometeoizdat, 1975.
8. Pal’shin N.I., Efremova T.V., Zdorovennova G.E., Zdorovennov R.E. Pokazatel’ oslableniya obluchennosti v ozerah Karelii // Izv. RGO. 2018. V. 150. Vyp. 6. S. 58–72. DOI 10.7868/S08696071180600512018
9. Pal’shin N.I., Efremova T.V., Potahin M.S. Vliyanie morfometricheskih harakteristik i geograficheskoj zonal’nosti na termicheskuyu stratifikaciyu ozer // Vodnye resursy. 2008. V. 35. № 2. S. 202–209.
10. Pogoda Rossii. URL: http://meteo.infospace.ru/ (data obrashcheniya 16.09.2020 g.)
11. Potahin M.S. Novye dannye po morfologii ozer Zaonezhskogo poluostrova // Obshchestvo. Sreda. Razvitie. 2017. № 3. S. 91–98.
12. Homskis V. Dinamika i termika malyh ozer. Vil’nyus: Mintis, 1969. 204 s.
13. Brönmark C., Hansson L.A. The Biology of Lakes and Ponds. Oxford: Oxford University Press, 2005. P. 285.
14. Christianson K.R., Johnson B.M., Hooten M.B., Roberts J.J. Estimating lake-climate responses from sparse data: An application to high elevation lakes // Limnol. Oceanogr. 2019. V. 64. P. 1371–1385.
15. Del Sontro T., Beaulieu J.J., Downing J.A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change // Limnol. Oceanogr.: Letters. 2018. V. 3(3). P. 64–75. doi 10.1002/lol2.10073
16. Fee E.J., Hecky R.E., Kasian S.E.M., Cruikshank D.R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian shield lakes // Limnol. Oceanogr. 1996. V. 41(5). P. 912–920.
17. Flake Online – Lake model Flake URL: http://www.flake.igb-berlin.de/ (data obrashcheniya16.09.2020 g.)
18. Golosov S., Kirillin G. A parameterized model of heat storage by lake sediments // Environmental modelling &Software. 2010. V. 25. P. 793–801.
19. Golosov S., Terzhevik A., Zverev I., Kirillin G., Engelhardt C. Climate change impact on thermal and oxygen regime of shallow lakes // Tellus A. 2012. V. 64. P. 17264. DOI 10.3402/tellusa.v64i0.17264
20. Gorham E., Boyce F.M. Influence of lake surface area and depth upon thermal stratification and the depth of the summer thermocline // J. Great Lakes Research. 1989. V. 15(2). P. 233–245. http://purl.umn.edu/148413
21. Grechushnikova M.G., Repina I.A., Stepanenko V.M. et al. Methane Emission From the Surface of the Mozhaisk Valley-Type Reservoir. // Geogr. Nat. Resour. 2019. V. 40. P. 247–255. https://doi.org/10.1134/S1875372819030077
22. IPCC – The Intergovernmental Panel on Climate Change. Reports. URL: https://www.ipcc.ch/reports/ (data obrashcheniya 16.09.2020 g.)
23. Jöhnk K.D. 1D hydrodynamic models in limnophysics (Turbulence – Meromixis Oxygen) // Habilitationschrift. Limnophysics Rep. 2001. V. 1(1). P. 1–235.
24. Kirillin G. Modelling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes // Bor. Environ. Res. 2010. V. 15. P. 279–293.
25. Mazumder A., Taylor W.D. Thermal structure of lakes varying in size and water clarity // Limnol. Oceanogr. 1994. V. 39(4). P. 968–976.
26. Mironov D.V., Heise E., Kourzeneva E., Ritter B., Schneider N., Terzhevik A. Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO // Boreal Env. Res. 2010. V. 15. P. 218–230.
27. O’Reilly C.M., Sharma S., Gray D. et al. Rapid and highly variable warming of lake surface waters around the globe // Geophys. Res. Lett. 2015. V. 42. I. 24. P. 10773–10781. DOI 10.1002/2015GL066235
28. Patalas K. Mid-summer mixing depths of lakes of different latitudes // Verh. Int. Ver. Theor. Angew. Limnol. 1984. V. 22. P. 97–102.
29. Read J.S., Winslow L.A., Hansen G.J.A., Van Den Hoek J., Hanson P.C., Bruce L., Markfort C.D. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology // Ecological Modelling. 2014. V. 291. P. 142–150. https://doi.org/10.1016/j.ecolmodel.2014.07.029
30. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Vesala T. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9. № 5. P. 1977–2006. DOI 10.5194/gmd-9-1977-2016
31. Subin Z.M., Riley W.J., Mironov D. An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1 // J. Adv. Model Earth Syst. 2012. V. 4. P. M02001. DOI 10.1029/2011MS000072
32. Tranvik L.J. et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnol. Oceanogr. 2009. V. 54(6). P. 2298–2314. DOI 10.4319/lo.2009.54.6_part_2.2298
33. Zdorovennova G., Palshin N., Zdorovennov R., Golosov G., Efremova T., Gavrilenko G., Terzhevik A. The oxygen regime of a shallow lake // Geography. Environment. Sustainability. 2016. № 2. V. 9. P. 47–57. DOI 10.15356/2071-9388_02v09_2016_04
Review
For citations:
Palshin N.I., Efremova T.V., Zdorovennova G.E., Gavrilenko G.G., Zdorovennov R.E., Terzhevik A.Yu., Bogdanov S.R. Thermal Regime of Small Lakes in Karelia (Calculations on the Numerical Flake Model). Proceedings of the Russian Geographical Society. 2020;152(3):32-44. (In Russ.) https://doi.org/10.31857/S0869607120030052