Preview

Proceedings of the Russian Geographical Society

Advanced search

Overland Runoff and its Impact on Hydrobiont Mortality in Avachinsky Gulf (Pacific Ocean, Kamchatka)

https://doi.org/10.31857/S0869607122040048

Abstract

This work discusses the specific features of riverine sediment inflow and its chemical composition to the Avachinsky Gulf of the Pacific Ocean. Based on the GloFAS-ERA5 reanalysis data, we assessed the hydrologic regime of the studied rivers. Further, the fingerprinting method was used to find the sediment transport pathways. In contrast, the sediment delivery to the Pacific Ocean with the Nalycheva River runoff is determined by the interpretation of turbidity plumes on Landsat satellite images. Our findings suggested the leading role of erosion processes on volcanic slopes in forming sediment yield associated with three primary sediment sources: the slopes of Avachinsky, Zhupanovsky and Kupol volcanoes. Our research pays special attention to the lahar consequences on the Zhupanovsky volcano slopes, which occurred in 2015. We supposed that this event had a short-term (within one year) impact on the sediment redistribution of the Nalycheva River estuary.

About the Authors

S. R. Chalov
Lomonosov Moscow State University; All-Russian Research Institute of Fisheries and Oceanography
Russian Federation

Moscow



A. S. Tsyplenkov
Lomonosov Moscow State University

Moscow



D. I. Shkolny
Lomonosov Moscow State University

Moscow



K. N. Prokopeva
Lomonosov Moscow State University

Moscow



E. I. Bahareva
Lomonosov Moscow State University

Moscow



References

1. Gorbach N.V., Samoilenko S.B., Plechova A.A., Melnikov D.V., Gorbach N.V., Samoilenko S.B., Plechova A.A., Melnikov D.V. Obval na vulkane Zhupanovskii (Kamchatka) v iiule 2015 g.: pervye dannye i nabliudeniia // Vestn. KRAUNTs. Ser. Nauki o Zemle. 2015. V. 27. № 3. P. 5–11.

2. Esin E.V. Obzor toksichnosti osnovnykh elementov-zagriaznitelei lososevykh nerestovykh rek kamchatki // Izvestiia TINRO. 2015. V. 180. P. 210–225.

3. Esin E.V., Chalov S.R. Ekologicheskaia klassifikatsiia rek vulkanicheskikh territorii Kamchatki // Chteniia pamiati Vladimira Iakovlevicha Levanidova. 2014. V. 6. P. 220–238.

4. Savenko V.S. Khimicheskii sostav vzveshennykh nanosov rek mira. M.: GEOS, 2006. 175 s.

5. Tarasov M.K., Tutubalina O.V. Water turbidity estimation in the Selenga River and nearby waters of lake Baikal using remote sensing data // Issledovaniia Zemli iz Kosmosa. 2018. V. 1. P. 60–71.

6. Chalov S.R., Efimov V.A. Particulate composition of suspended sediments: characteristics, classifications and spatial variability // Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2021. № 4. P. 91–103.

7. Chalov S.R., Prokopeva K.N. Assessment suspended sediment budget of the Lena river delta based on the remote sensing dataset // Issledovaniia Zemli iz Kosmosa. 2021. № 3. P. 19–29. https://doi.org/10.31857/S0205961421030027

8. Chalov S.R., Tsyplenkov A.S. Sediment discharge of small rivers in areas of active volcanism (River Sukhaya Elizovskaya, Kamchatka) // Geomorfologiya. 2017. V. 6. № 1. P. 104–116. https://doi.org/10.15356/0435-4281-2017-1-104-116

9. Berger C., McArdell B.W., Schlunegger F. Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities // Geomorphology. 2011. V. 125. № 3. P. 421–432. https://doi.org/10.1016/j.geomorph.2010.10.019

10. Bracken L.J., Wainwright J., Ali G.A., Tetzlaff D., Smith M.W., Reaney S.M., Roy A.G. Concepts of hydrological connectivity: Research approaches, pathways and future agendas // Earth-Science Reviews. 2013. V. 119. P. 17–34. https://doi.org/10.1016/j.earscirev.2013.02.001

11. Cavalli M., Goldin B., Comiti F., Brardinoni F., Marchi L. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models // Geomorphology. 2017. V. 291. P. 4–16. https://doi.org/10.1016/j.geomorph.2016.04.009

12. Chalov S., Prokopeva K., Habel M. North to South Variations in the Suspended Sediment Transport Budget within Large Siberian River Deltas Revealed by Remote Sensing Data // Remote Sensing. 2021. V. 13. № 22. P. 4549. https://doi.org/10.3390/rs13224549

13. Chalov S.R., Tsyplenkov A.S., Pietron J., Chalova A.S., Shkolnyi D.I., Jarsjö J., Maerker M. Sediment transport in headwaters of a volcanic catchment—Kamchatka Peninsula case study // Frontiers of Earth Science in China. 2017. V. 11. № 3. P. 565–578. https://doi.org/10.1007/s11707-016-0632-x

14. Collins A.L., Pulley S., Foster I.D.L., Gellis A., Porto P., Horowitz A.J. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for endusers // Journal of Environmental Management. 2017. V. 194. P. 86–108. https://doi.org/10.1016/j.jenvman.2016.09.075

15. Collins A.L., Walling D.., Leeks G.J.L. Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn river basins, United Kingdom // Géomorphologie : relief, processus, environnement. 1996. V. 2. № 2. P. 41–53. https://doi.org/10.3406/morfo.1996.877

16. DiBiase R.A., Whipple K.X., Heimsath A.M., Ouimet W.B. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA // Earth and Planetary Science Letters. 2010. V. 289. № 1– 2. P. 134–144. https://doi.org/10.1016/j.epsl.2009.10.036

17. Evrard O., Navratil O., Ayrault S., Ahmadi M., Némery J., Legout C., Lefèvre I., Poirel A., Bonté P., Esteves M. Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment // Earth Surface Processes and Landforms. 2011. V. 36. № 8. P. 1072–1089. https://doi.org/10.1002/esp.2133

18. Gaspar L., Lizaga I., Blake W.H., Latorre B., Quijano L., Navas A. Fingerprinting changes in source contribution for evaluating soil response during an exceptional rainfall in Spanish pre-Pyrenees // Journal of Environmental Management. 2019. V. 240. N November 2018. P. 136–148. https://doi.org/10.1016/j.jenvman.2019.03.109

19. Harrigan S., Zsoter E., Alfieri L., Prudhomme C., Salamon P., Wetterhall F., Barnard C., Cloke H., Pappenberger F. GloFAS-ERA5 operational global river discharge reanalysis 1979-present // Earth System Science Data. 2020. V. 12. № 3. https://doi.org/10.5194/essd-12-2043-2020

20. Khesina Z.B., Karnaeva A.E., Pytskii I.S., Buryak A.K. The mysterious mass death of marine organisms on the Kamchatka Peninsula: A consequence of a technogenic impact on the environment or.

21. Lehner B., Grill G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems // Hydrological Processes. 2013. V. 27. № 15. P. 2171– 2186. https://doi.org/10.1002/hyp.9740

22. Linke S., Lehner B., Ouellet Dallaire C., Ariwi J., Grill G., Anand M., Beames P., BurchardLevine V., Maxwell S., Moidu H., Tan F., Thieme M. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution // Scientific Data. 2019. V. 6. № 1. P. 283. https://doi.org/10.1038/s41597-019-0300-6

23. Lizaga I., Gaspar L., Blake W.H., Latorre B., Navas A. Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event // Geomorphology. 2019. V. 341. P. 216–229. https://doi.org/10.1016/j.geomorph.2019.05.015

24. Lizaga I., Latorre B., Gaspar L., Navas A. FingerPro: an R Package for Tracking the Provenance of Sediment // Water Resources Management. 2020. V. 34. № 12. P. 3879–3894. https://doi.org/10.1007/s11269-020-02650-0

25. Mao L., Cavalli M., Comiti F., Marchi L., Lenzi M.A., Arattano M. Sediment transfer processes in two Alpine catchments of contrasting morphological settings // Journal of Hydrology. 2009. V. 364. № 1–2. P. 88–98. https://doi.org/10.1016/j.jhydrol.2008.10.021

26. Messenzehl K., Hoffmann T., Dikau R. Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park – linking geomorphic field mapping with geomorphometric modelling // Geomorphology. 2014. V. 221. P. 215–229. https://doi.org/10.1016/j.geomorph.2014.05.033

27. Motha J.A., Wallbrink P.J., Hairsine P.B., Grayson R.B. Determining the sources of suspended sediment in a forested catchment in southeastern Australia // Water Resources Research. 2003. V. 39. № 3. https://doi.org/10.1029/2001WR000794

28. Owens P.N., Blake W.H., Gaspar L., Gateuille D., Koiter A.J., Lobb D.A., Petticrew E.L., Reiffarth D.G., Smith H.G., Woodward J.C. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications // Earth-Science Reviews. 2016. V. 162. P. 1–23. https://doi.org/10.1016/j.earscirev.2016.08.012

29. Palazón L., Latorre B., Gaspar L., Blake W.H., Smith H.G., Navas A. Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures // Science of The Total Environment. 2015. V. 532. P. 456–466. https://doi.org/10.1016/j.scitotenv.2015.05.003

30. Phillips J.M., Russell M.A., Walling D.E. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments // Hydrological Processes. 2000. V. 14. № 14. P. 2589–2602. https://doi.org/10.1002/1099-1085(20001015)14:14<2589::AID-HYP94>3.0.CO;2-D

31. Pulley S., Collins A.L. Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software // Science of the Total Environment. 2018. V. 635. P. 838–858. https://doi.org/10.1016/j.scitotenv.2018.04.126

32. Romanescu G., Chalov S., Stoleriu C.C., Mihu-Pintilie A., Angileri S.E., Kuznetsova Y., Cama M., Maerker M. Geomorphologic map of the 1st Mutnaya River, Southeastern Kamchatka, Russia // Journal of Mountain Science. 2017. V. 14. № 12. P. 2373–2390. https://doi.org/10.1007/s11629-017-4358-3

33. Vanacker V., Blanckenburg F. von, Govers G., Molina A., Campforts B., Kubik P.W. Transient river response, captured by channel steepness and its concavity // Geomorphology. 2015. V. 228. P. 234–243. https://doi.org/10.1016/j.geomorph.2014.09.013

34. Vigiak O., Borselli L., Newham L.T.H., McInnes J., Roberts A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio // Geomorphology. 2012. V. 138. № 1. P. 74–88. https://doi.org/10.1016/j.geomorph.2011.08.026

35. Walling D.E. The sediment delivery problem // Journal of Hydrology. 1983. V. 65. № 1–3. P. 209–237. https://doi.org/10.1016/0022-1694(83)90217-2

36. Walling D.E. Tracing suspended sediment sources in catchments and river systems // Science of The Total Environment. 2005. V. 344. № 1–3. P. 159–184. https://doi.org/10.1016/j.scitotenv.2005.02.011

37. Wobus C., Whipple K.X., Kirby E., Snyder N., Johnson J., Spyropolou K., Crosby B., Sheehan D. Tectonics from topography: Procedures, promise, and pitfalls // Tectonics, Climate, and Landscape Evolution. Geological Society of America, 2006. https://doi.org/10.1130/2006.2398(04)

38. Yakubovich O.V., Yakovleva E.V., Golovanov A.N., Volkov A.S., Volkova O.S., Zvereva E.A., Dimitrova O.V., Vasiliev A.N. The First Vanadate–Carbonate, K 2 Mn 3 (VO 4) 2 (CO 3) : Crystal Structure and Physical Properties // Inorganic Chemistry. 2013. V. 52. № 3. P. 1538–1543. https://doi.org/10.1021/ic302333e

39. Berezovskaia V.A. Avachinskaia guba. Gidrokhimicheskii rezhim, antropogennoe vozdeistvie. Petropavlovsk-Kamchatskii: KGARF, 1999.

40. Bondur V.G., Zamshin V.V., Chvertkova O.I. Space study of a red tide-related environmental disaster near Kamchatka peninsula in September–October 2020 // Doklady Earth Sciences. 2021. V. 497. № 1. P. 255–260 https://doi.org/10.31857/S2686739721030014

41. Bondur V.G., Zamshin V.V., Chvertkova O.I., Matrosova E.R., Khodaeva V.N. Analysis of the causes of the Kamchatka environmental disaster in autumn 2020 related with a red tide, based on satellite data // Issledovanie Zemli Iz Kosmosa. 2021. №. 3. P. 3–18 https://doi.org/10.31857/S020596142103009X

42. Vinogradov V.N., Muravev Ia.D. Lednik Kozelskii (Avachinskaia gruppa vulkanov) Vodno-lednikovyi i teplovoi balans gornolednikovykh basseinov. Spb: Gidrometeoizdat, 1992.

43. Girina O.A., Lupian E.A., Sorokin A.A., Melnikov D.V., Manevich A.G., Manevich T.M. Sputnikovye i nazemnye nabliudeniia eksplozivnykh izverzhenii vulkana Zhupanovskii (Kamchatka, Rossiia) v 2013 i 2014–2016 gg // Vulkanologiia i seismologiia. 2018. № 1. P. 3–17.

44. Kuksina L.V., Alekseevskii N.I. Erozionnoe raionirovanie territorii Kamchatskogo kraia // Geografiia I Prirodnye Resursy. 2016. V. 2. P. 132–141.

45. Terskii P.N., Zhbakov K.K., Mikheeva A.I. Sviaz morfometricheskikh kharakteristik vodosborov i landshaftnykh uslovii v basseine R. Avachi (kamchatka) s kharakteristikami srednegodovogo i maksimalnogo stoka rek // Issledovaniia vodnykh biologicheskikh resursov Kamchatki i severo-zapadnoi chasti Tikhogo okeana. 2017. № 46. P. 51–65. https://doi.org/10.15853/2072-8212.2017.46.51-65

46. Kamchatka: Pollution killing sea life in Russian far east // BBC News. 2020.

47. 95% of Marine Life on Sea Floor Killed in Kamchatka Eco-Disaster, Scientists Say // The Moscow Times. 2020.


Supplementary files

Review

For citations:


Chalov S.R., Tsyplenkov A.S., Shkolny D.I., Prokopeva K.N., Bahareva E.I. Overland Runoff and its Impact on Hydrobiont Mortality in Avachinsky Gulf (Pacific Ocean, Kamchatka). Proceedings of the Russian Geographical Society. 2022;154(4):69-84. (In Russ.) https://doi.org/10.31857/S0869607122040048

Views: 172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-6071 (Print)