Quality Analysis of the Global Digital Relief Model GMTED2010 for Evaluation of the Erosion Potential (on the Example of the South of the European Territory of Russia)
https://doi.org/10.31857/S0869607122050068
Abstract
The article presents a quantitative analysis of differences in the calculation of the LS-factor arising from the use of various options for the global digital elevation model GMTED2010: “Mean”; “Breakline emphasys”; “Median”. The global digital elevation model SRTM (C-SIR radar) was used as a reference for comparative analysis. In addition, an assessment of differences between values of LS-factor obtained by various methods was made. In this case, 4 methods for calculating the LS-factor were used, proposed in the: USLE method; RUSLE method; methodology proposed by the Research Laboratory of Soil Erosion and Channel Processes of Moscow State University, methodology published by Moore I.D. and Nieber J.L. in 1989. The analysis was carried out within 4 test areas reflecting the main types of relief in the south of the European territory of Russia. It has been established that the closest results in the calculation of the LS-factor to the SRTM C-SIR model are given by the variant of the model GMTED2010 “MEAN”. The errors arising between the SRTM C-SIR and GMTED2010 “MEAN” models within moderately dissected plains are 7–54%, where most of the arable land is located. At the same time, errors within mountainous areas or stratal-accumulative plains and lowlands are 68–322%. An analysis of the use of various formulas for calculating the LS-factor shows that within all test areas the lowest values are obtained using the methodology proposed by the Research Laboratory of Soil Erosion and Channel Processes of Moscow State University. and the highest values using USLE, or using the methodology proposed by Moore I.D. and Nieber J.L.
References
1. Ashatkin I.A., Maltsev K.A., Gainutdinova G.F., Usmanov B.M., Gafurov A.M., Ganieva A.F., Maltseva T.S., Gizzatullina E.R. Analysis of relief morphometry by global DEM in the southern part of the European territory of Russia // Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2020. T. 162. Vyp. 4. S. 612–628. https://doi.org/10.26907/2542-064X.2020.4.612-628
2. Ermolaev O.P., Mal’tsev K.A., Mukharamova S.S., Kharchenko S.V., Vedeneeva E.A. Cartographic model of river basins of European Russia // Geography and Natural Resources April 2017. T. 38. Vyp. 2. P 131–138. https://doi.org/10.21782/GiPR0206-1619-2017-2(27-36)
3. Kondrateva M.A., Chashchin A.N. Assessment of erosion risk of relief based on the digital modeling InterCarto. InterGIS // GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography. 2021. T. 27. Vyp. 2. S. 241–252. https://doi.org/:10.35595/2414-9179-2021-2-27-241-252
4. Larionov G.A., Eroziya i deflyatsiya pochv: osnovnyye zakonomernosti i kolichestvennyye otsenki. Moscow: MGU Publ., 1993. 200 s.
5. Natsional’nyy atlas pochv Rossiyskoy Federatsii. Pod red. S.A. Shoby. M. Astrel’, 2011. 632 s.
6. Natsional’nyy atlas Rossii. Tom 2 (Priroda.Ekologiya). Pod red. Levitina I.Ye. M.: Roskartografiya, 2007. 495 s.
7. On’kov I.V. Otsenka tochnosti vysot SRTM dlya tseley ortotransformirovaniya kosmicheskikh snimkov vysokogo razresheniya // Geomatika. 2011. Vyp. 3. S. 40–46.
8. Pochvenno-erozionnaya karta SSSR. Masshtab 1 : 5000000. Pod red. S.S. Soboleva. M.: GUGK, 1968.
9. Ukrainskiy P.A., Buryak ZH.A. K postanovke opyta po poisku optimal’noy formuly rascheta erozionnogo potentsiala rel’yefa // Fundamental’nyye osnovy sozdaniya sistem zemledeliya s tsel’yu sokhraneniya i vosproizvodstva okruzhayushchey sredy: Materialy Vserossiyskoy shkoly molodykh uchenykh. Belgorod, 2018. S. 214–218.
10. Florinskiy I.V. Geomorfometriya segodnya. InterKarto, InterGIS. 2021. T. 27. Vyp. 2. S. 394–447. https://doi.org/10.35595/2414-9179-2021-2-27-394-448
11. Bayık Ç., Becek K., Mekik Ç., Özendi M. On the vertical accuracy of the ALOS world 3D-30m digital elevation model // Remote Sens. Lett. 2018. V. 9. № 6. P. 607–615. https://doi.org/10.1080/2150704X.2018.1453174
12. Borrelli P., Alewell C., Alvarez P. Soil erosion modelling: A global review and statistical analysis // Science of The Total Environment. 2021. № 780.146494. https://doi.org/0.1016/j.scitotenv.2021.146494
13. Carabajal C.C., Harding D.J., Boy Jean-Paul, Danielson J.J., Gesch D.B., Suchdeo V.P. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control”, Proc. SPIE 8286, International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications, 82861Y (24 October 2011). https://doi.org/10.1117/12.912776
14. Dabney S.M., Yoder D.C., Vieira D.A.N. The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield // Journal of Soil and Water Conservation. 2012. № 67. P. 343–353. https://doi.org/10.2489/jswc.67.5.343
15. Danielson J.J., Gesch D.B. Global Multi-resolution Terrain Elevation Data 2010(GMTED2010) (No. Open-File Report 2011–1073). Reston: U.S. Geological Survey 2011. https://doi.org/10.3133/ofr20111073
16. Desmet P.J.J., Govers G.A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units // Journal of Soil and Water Conservation. 1996. № 51. P. 427–433.
17. Krasilnikov P., Makarov O., Alyabina I., Nachtergaele F. Assessing soil degradation in northern Eurasia // Geoderma Regional. 2006. № 7. P. 1–10. https://doi.org/10.1016/j.geodrs.2015.11.002
18. Lindsay J.B., Creed I.F. Distinguishing actual and artefact depressions in digital elevation data // Computers & Geosciences. 2006. № 32. P. 1192–1204. https://doi.org/10.1016/j.cageo.2005.11.002
19. Maltsev K., Yermolaev O. Assessment of soil loss by water erosion in small river basins in Russia // CATENA. 2020. № 195. 104726. https://doi.org/10.1016/j.catena.2020.104726
20. Moore I.D., Nieber J.L. Landscape assessment of soil erosion and nonpoint source pollution // J. Minn. Acad. Sci. 1989. № 55. P. 18–25.
21. Nachtergaele F.O., Petri M., Biancalani R., van Lynden G., van Velthuizen H., Bloise M. Global Land Degradation Information System (GLADIS), an information database for land degradation assessment at global level. Version 1.0. Rome, 2011.
22. Phinzi K. Ngetar N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review // International Soil and Water Conservation Research. 2019. № 7. P. 27–46.
23. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Resived Universal Soil Loss Equation (RUSLE). Washington: U.S. Government Printing Office, 1997. 384 p.
24. Reuter H.I., Nelson A., Strobl P., Mehl W., Jarvis A. A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters // IEEE Int. Geoscience and Remote Sensing Symposium. 2009. № 5. P. 240–243. https://doi.org/10.1109/IgARSS.2009.5417688
25. Tan M.L., Ficklin D.L., Dixon B., Ibrahim A.L., Yusop Z., Chaplot V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow // Applied Geography. 2015. № 63. P. 357–368. https://doi.org/10.1016/j.apgeog.2015.07.014
26. Thomas J., Prasannakumar V., Vineetha P. Suitability of spaceborne digital elevation models of different scales in topographic analysis: an example from Kerala, India. // Environmental Earth Sci- ences. 2015. № 73. P. 1245–1263. https://doi.org/10.1007/s12665-014-3478-0
27. Van Oost K., Quine T.A., Govers G., De Gryze S., Six J., Harden J.W., Ritchie J.C., McCarty G.W., Heckrath G., Kosmas C., Giraldez J.V., Marques Da Silva J.R., Merckx, R.. The impact of agricultural soil erosion on the global carbon cycle // Science. 2007. № 80. P. 626–629. https://doi.org/10.1126/science.1145724
28. Verstraeten G., Oost K., Rompaey A. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling // Soil Use and Management. 2006. № 18. P. 386–394. https://doi.org/10.1079/SUM2002150
29. Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses: A guide to conservation planning. Washington: U.S. Government Printing Office, 1978. 67 p.
Review
For citations:
Maltsev K.A. Quality Analysis of the Global Digital Relief Model GMTED2010 for Evaluation of the Erosion Potential (on the Example of the South of the European Territory of Russia). Proceedings of the Russian Geographical Society. 2022;154(5-6):112-122. (In Russ.) https://doi.org/10.31857/S0869607122050068