Preview

Proceedings of the Russian Geographical Society

Advanced search

Empirical Model of the Thermal Structure of a Small Polymictic Lake for Open Water Period

https://doi.org/10.31857/S0869607122020033

Abstract

The influence of weather conditions on the formation of the thermal structure of a small polymictic lake in the temperate zone during the open water period was investigated on the basis of an analysis of the data of daily long-term (2007–2020) field measurements. It is shown that during the spring-summer heating of the Lake Vendyurskoe (Karelia) from May to the first half of August, the temperature of the upper water layer (2 m) is mainly influenced by synoptic air temperature variability. At medium depths (6 m), the influence of synoptic fluctuations in air temperature on water temperature significantly decreases, while the role of seasonal changes in heat accumulation increases. In the bottom layer (11 m), fluctuations in water temperature are mainly determined by episodes of complete mixing of the lake water mass during the passage of cyclones, that is, they depend on the intensification of winds, leading to the complete destruction of stratification. During the cooling period of the lake from the second half of August to the ice cover formation (November–December), against the background of a decrease in the role of synoptic variability, the influence of seasonal air temperature variability on water temperature increases. Fluctuations in air temperature explain more than 50% of the dispersion of epilimnion water temperature during the spring-summer heating and all layers of the water column during the autumn-winter cooling. An empirical model of the dependence of water temperature at different depths of the water column on synoptic and seasonal changes in air temperature for open water period has been developed. The model does not take into account heat exchange with bottom sediments, since in the period of open water surface, it is 1–2 orders of magnitude less than the total heat exchange with the atmosphere.

About the Authors

N. I. Palshin
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



T. V. Efremova
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



S. R. Bogdanov
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



A. Yu. Terzhevik
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



G. E. Zdorovennova
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



R. E. Zdorovennov
Northern water problems Institute Karelian Research Center of RAS
Russian Federation

Petrozavodsk



References

1. Bardin M.Yu. Izmenchivost’ temperatury vozduha nad zapadnymi territoriyami Rossii i sopredel’nymi stranami v XX veke // Meteorologiya i gidrologiya. 2002. № 8. S. 5–23.

2. Vserossijskij nauchno-issledovatel’skij institut gidrometeorologicheskoj informacii - Mirovoj centr dannyh (VNIIGMI-MCzD). URL: http://meteo.ru/data/162-temperature-precipitation (Data obrashheniya 10 sentyabrya 2021 g.).

3. Gavrilenko G.G., Zdorovennova G.E., Zdorovennov R.E`., Pal`shin N.I., Mitroxov A.V., Terzhevik A.Yu. Teplopotok na granice voda-donnye otlozheniya v nebol`shom ozere // Trudy KarNCz RAN. № 9. Ser. Limnologiya. 2015. C. 3–9. https://doi.org/10.17076/lim72

4. Gruza G.V., Ran’kova E.Ya. Nablyudaemye i ozhidaemye izmeneniya klimata Rossii: temperatura vozduxa. Obninsk: VNIIGMI-MCzD, 2012. 194 s.

5. Efremova T.V., Pal’shin N.I., Belashev B.Z. Temperatura vody raznotipnyh ozer Karelii v usloviyax izmeneniya klimata (po dannym instrumental’nyh izmerenij 1953–2011 gg.) // Vodnye resursy. 2016. T. 43. № 2. S. 228–238.

6. Ozera Karelii. Spravochnik. Petrozavodsk: KarNCz RAN, 2013. 464 s.

7. Pal’shin N.I., Efremova T.V. Stoxasticheskaya model’ godovogo xoda temperatury poverxnosti vody v ozerax // Meteorologiya i gidrologiya. 2005. № 3. S.85–94.

8. Raspisanie pogody. URL: http://rp5.ru. (Data obrashheniya 10 sentyabrya 2021 g.)

9. Reznikov A.I., Isachenko G.A. Izmenenie klimaticheskix xarakteristik zapadnoj chasti tajgi Evropejskoj Rossii v konce XX-nachale XXI vv. // Izvestiya RGO. 2021. T. 153. № 1. S. 3–18. https://doi.org/10.31857/S0869607121010055

10. Kuusisto E. Suomen Vestöjen Lämpötilat Kaudella 1961–1975. Water temperature of lakes and rivers in Finland in the period 1961–1975. Vesihallitus – National board of waters, Finland, Helsinki, 1981. 40 p.

11. Liu W., Bocaniov S.A., Lamb K.G., Smith R. E.H. Three-dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie // J. Great Lakes Research. 2014. 40, 4. P. 827–840. https://doi.org/10.1016/j.jglr.2014.08.002.

12. Mammarella I., Gavrylenko G., Zdorovennova G., Ojala A., Erkkilä K.-M., Zdorovennov R., Stepanyuk O., Palshin N., Terzhevik A., Vesala T., Heiskanen J. Effects of similar weather patterns on the thermal stratification, mixing regimes and hypolimnetic oxygen depletion in two boreal lakes with different water transparency // Boreal Env. Res. 2018, 23. P. 237–247.

13. Mironov D.V. Parameterization of lakes in numerical weather prediction. Description of a lake model // COSMO Technical Report. Deutscher Wetterdienst, Offenbach am Main, Germany. 11. 2008. 41 p.

14. O’Reilly C. M., et al. Rapid and highly variable warming of lake surface waters around the globe // Geophysical Research Letters. 2015. 42, 24. 10773–10781. https://doi.org/10.1002/2015GL066235.

15. Perroud M., Goyette S., Martynov A., Beniston M., Anneville O. Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models // Limnol. Oceanogr. 2009. 54, 5. P. 1574–1594.

16. Robertson D.M, Ragotzkie R.A. Changes in thermal structure of moderate to large sizes lakes in response to change in air temperature // Aquatic Sciences. 1990. 52, 3. P. 360–380.

17. Rukhovets L.A., Filatov N.N. Ladoga and Onego – Great European Lakes: Observations and Modeling. Springer, 2010. 308 p.

18. Sharma S., Walker S.C., Jackson D.A. Empirical modeling of lake water-temperature relationships: a comparison of approaches // Freshwater Biol. 2008. № 53. P. 897–911.

19. Schneider P., Hook S.J. Space observations of inland water bodies show rapid surface warming since 1985 // Geophys. Res. Lett. 2010. 37, 22. P. 1–5. L22405, https://doi.org/10.1029/2010GL045059.

20. Toffolon M., Piccolroaz S., Majone B., Soja A.-M., Peeters F., Schmid M., Wüest A. Prediction of surface temperature in lakes with different morphology using air temperature // Limnol. Oceanogr. 2014. 59(6). P. 2185–2202. https://doi.org/10.4319/lo.2014.59.6.2185

21. Woolway R.I., Merchant C.J. Intralake heterogeneity of thermal responses to climate change: A study of large Northern Hemisphere lakes // Journal of Geophysical Research: Atmospheres. 2018. 123. P. 3087–3098. https://doi.org/10.1002/2017JD027661.

22. Xue P., Pal J.S., Ye X., Lenters J.D., Huang C., Chu P.Y. Improving the Simulation of Large Lakes in Regional Climate Modeling: Two-Way Lake–Atmosphere Coupling with a 3D Hydrodynamic Model of the Great Lakes // Journal of Climate. 2017. 30, 5. P. 1605–1627. https://doi.org/10.1175/JCLI-D-16-0225.1

23. Zhong Y., Notaro M., Vavrus S.J., Foster M.J. Recent accelerated warming of the Laurentian Great Lakes: Physical drivers // Limnol. Oceanogr. 2016. 61, 5. P. 1762–1786. https://doi.org/10.1002/lno.10331


Review

For citations:


Palshin N.I., Efremova T.V., Bogdanov S.R., Terzhevik A.Yu., Zdorovennova G.E., Zdorovennov R.E. Empirical Model of the Thermal Structure of a Small Polymictic Lake for Open Water Period. Proceedings of the Russian Geographical Society. 2022;154(2):61-76. (In Russ.) https://doi.org/10.31857/S0869607122020033

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-6071 (Print)